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Abstract 

 We have constructed a nanoplasmonic molecular ruler, which can perform 

label-free and real-time monitoring of DNA length changes and perform DNA 

footprinting.  The ruler was created by tethering double-stranded DNA to single Au 

nanoparticles.  The scattering spectra of Au-DNA nanoconjugates showed red-shifted 

peak plasmon resonance wavelength dependent on DNA length, which can be 

measured with sub-nanometer axial resolution, averaging ~1.24 nm peak wavelength 

shift per DNA base pair.  The spectra of individual Au-DNA nanoconjugates in the 

presence of nuclease showed a time-resolved dependence on the reaction dynamics, 

allowing quantitative, kinetic and real-time measurement of nuclease activity.  The 

ruler was further developed into a new DNA footprinting platform. We showed the 

specific binding of a protein to DNA and the accurate mapping of its footprint.  This 

work promises a very fast and convenient platform for mapping DNA-protein 

interactions, for nuclease activity monitoring, and for other DNA size-based methods. 
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Interactions between nucleic acids and proteins are essential to genetic 

information processing.  The detection of size changes in nucleic acids is the key to 

mapping such interactions, and usually requires the synthesis of oligonucleotide 

substrates with fluorescent, electrochemical or radioactive labels1-3, especially for 

nuclease-based methods.  Yet, real-time detection within small volumes remains a 

challenge in the era of microarray and microfluidic devices. 

Surface plasmon resonance (SPR) spectroscopy is an ultrasensitive optical 

method that measures the refractive index or dielectric constant of liquids or media in 

contact with the surface of metallic thin films.  Conventional bulk-scale SPR can 

measure the refractive index of thin dielectrics, small analyte concentration, protein-

protein interaction, and DNA hybridization4, 5.  A platform that allows for plasmon 

resonance sensing on a single metallic nanoparticle at high speed has been developed, 

and various methods have been reported for immobilizing biomolecules on metallic 

nanoparticles6-14. The plasmon resonance wavelengths of the Au or Ag nanoparticles 

shift in response to changes in their immediate environment, and the wavelength 

change can be detected using scattering or absorption spectroscopy.  Recently, methods 

have been developed to tether synthesized DNA to highly water-soluble Au 

nanoparticles15-19.  We have also previously used single gold and silver nanoparticle 

dimer to demonstrate nanoplasmonic distance measurement20. 

In this paper, we designed a nanoplasmonic molecular ruler, with a 54-base pair 

double-stranded DNA (dsDNA) as the enzymatic substrate and calibration standard, 

and conjugated to 20 nm Au nanoparticle (Fig 1, 2).  The dsDNA contained cleavage 

sites for the endonucleases HinDIII, XhoI, SalI, and KpnI at nucleotide positions 12, 

24, 36, and 48.  The surface density of dsDNA on Au nanoparticles was controlled by 

their concentration ratio during immobilization.  A 100:1 DNA:Au ratio was found to 



4 

be the best compromise to preserve the natural extension of dsDNA (Fig. 2a), while 

allowing accessibility to the nuclease21 (Fig. 2b-3).  The surface modification of Au 

nanoparticles with dsDNA was confirmed by transmission electron microscopy (TEM) 

(Fig. 2a) and by electrophoresis (Fig. 2b-2). 

 The scattering images and spectra of individual nanoconjugates were acquired 

using a dark-field microscopy system with a true-color imaging camera and a 

spectrometer.  Interestingly, Au-phosphine (Au-ph, Fig. 2c-2), which carries no DNA 

but phosphine surfactant, and Au-phosphine-DNA (Au-DNA, Fig. 2c-3) exhibit 

different colors in yellow and red, respectively.  Attachment of DNA seems to red shift 

the peak plasmon resonance wavelength of the Au nanoparticle by 67 nm (Fig. 2c-4).  

In order to investigate whether the nanoplasmonic resonance frequency shift of the Au-

DNA nanoconjugate can accurately reflect DNA size change, we artificially produced 

DNA size standards by endonuclease cleavage.  About 10 nanoconjugates from each 

sample were examined spectroscopically in dark field and the statistics of the plasmon 

resonance wavelengths are shown in Fig. 3.   The Au-DNA nanoconjugates provide a 

new means for studying the kinetics of the nuclease enzymatic reactions.  Real time 

measurement of endonuclease activity and kinetics for one model endonuclease XhoI 

was demonstrated, and the average plasmon resonance wavelength drops after the XhoI 

endonuclease reactions due to the loss of 30 base pairs of dsDNA (Fig. 3a and 3b).  

EDTA-induced inhibition of XhoI reaction can also be visualized (Fig. 3b).  The salt 

concentration change was negligible, since all components were pre-incubated with the 

same reaction buffer (Fig. 3b).   

We then focused on the size effect of the attached DNA. Au-DNA 

nanoconjugates were reacted with KpnI, SalI, XhoI, and HinDIII, which led to the loss 

of the first 6, 18, 30, and 42 base pairs from the distal end of the full-length dsDNA, 
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respectively.  Fig. 3c-1 shows the typical scattering spectra and plasmon resonance 

wavelengths of Au-DNA nanoconjugates after the 1 hour cleavage reactions.  Fig. 3c-2 

shows the plasmon resonance spectra of single Au nanoparticles tethered with 0, 12, 

24, 36, 48, and 54 bps of dsDNA.  The average wavelengths blue shifts were 

approximately 67 nm, 62 nm, 45 nm, 28 nm, 10 nm and 0 nm, respectively.  The 

plasmon resonance shift of the nanoparticle corresponded to the change of the dielectric 

layer around the nanoparticle and is related to the length of the digested dsDNA.  Using 

the Mie scattering calculation program for coated Au nanoparticles22, the equivalent 

dielectric constant, or refractive index of the biopolymer shell (dsDNA+phosphine), 

was obtained (Supplemental Table S1, Fig. S2, and Fig. 3c-2). The relationship 

between the dsDNA length and the equivalent refractive index showed a good 

agreement with the quadratic Langevin model23 (red fitted curve in Fig. 3c-2 and 

Supplemental data).  An average wavelength shift of ~1.24 nm/bp was observed.  Note 

the full length of the complete dsDNA (~20 nm) is much longer than the effective 

Forster transfer distance (<10 nm), thus the molecular ruler has longer detection range 

than Forster resonance energy transfer (FRET). 

 Based on the established correlation curve between the changes in the plasmon 

wavelength and in the DNA size (Fig. 3c), the DNA length in a nuclease reaction can 

be determined, which allows us to measure the footprint of DNA-binding proteins.  

Here we used the EcoRI(Q111) protein as a model DNA binding protein in exonuclease 

DNA footprinting.  EcoRI(Q111) is a non-catalytic, cleavage-defective variant of the 

EcoRI protein with amino acid residue 111 mutated to Glutamine (Q).  EcoRI(Q111) 

still maintains specific binding activity to the sequence of GAATTC on dsDNA, but 

doe not cleave DNA24, 25.  We have previously used EcoRI(Q111) to block a 

transcription elongation complex26.  As depicted in Fig. 4a, EcoRI(Q111) binds to 
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GAATTC DNA sequence on the Au-DNA nanoconjugates.  Subsequently an 

exonuclease enzyme, BAL31 (100nM final concentration), is introduced to degrade the 

untethered dsDNA end without any specificity.   BAL31 is an exonuclease that 

degrades both 3’ and 5’ termini of dsDNA27.  Fig. 4 b and c show the scattering spectra 

of the digested Au-DNA nanoconjugate without and with the bound EcoRI(Q111), 

respectively.   For the DNA unbound by EcoRI(Q111), when digested by BAL31, the 

plasmon resonance wavelength of the nanoconjugate blue-shifted ~52 nm in 20 minutes 

and stabilized afterwards (blue square in Fig. 4d); while for the DNA bound by the 

EcoRI(Q111), the plasmon resonance wavelength of the nanoconjugate shifted a 

maximum of 25 nm in ~10 minutes and stabilized afterwards (red circles in Fig. 4d).  

The corresponding base pair of the degraded dsDNA was calculated according to the 

fitted quadratic Langevin model (Supplement).   The BAL31 exonuclease digested 

almost all (~90%) of the 54 bps of the dsDNA while it digested only ~25 bps with the 

EcoRI(Q111) blocking procession of BAL31 exonuclease.   The stalling point of the 

exonuclease is around 25+/-3 bps from the distal end of the DNA, which is 

approximately 7 bps from the GAATTC site, and is in perfect agreement with previous 

measurement results using conventional radiolabels (7+/-3 bps)25.  Previous mapping 

indicates that EcoRI(Q111) binds to 3 bp of dsDNA flanking the 3’ boundary of the 

GAATTC sequence, and the steric exclusion between EcoRI(Q111) and exonuclease 

contributes to the other 4 bps.  A control exonuclease Exo-1, which does not cleave 

dsDNA, showed no effect on the ruler spectra (Fig. 4d). 

The magnitudes of plasmon resonance shifts in our experiments are greater than 

those reported previously in other biochemical reactions such as protein binding.  We 

attribute the relatively larger wavelength shift to the stiffness of dsDNA axially and the 

unique dependence of its dielectric constant on its length.  Additionally, since the 
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proteins and DNA have distinct electron densities, there is a large difference in their 

scattering potential.  It seems that the DNA scattering potential is one order of 

magnitude higher than proteins.  Hence, the partial shortening or extension of the 

dsDNA will lead to a proportionally larger change around the Au surface compared to 

the change induced by a coiled protein binding or disassociation event.  Furthermore, 

the reduction in the length of the dsDNA is also accompanied by a considerable 

decrease of its refractive index (Supplemental data, Table S1).  An independent study 

by Doron-Mor et al showed coordination-based self-assembled multilayers can offer 

thickness tuning of Au nanoparticle SPR spectra in the range from 1-15nm28, 29, further 

validating our observation of plasmonic spectra shift can be correlated with the length 

of the DNA.  The irregularity in the size and shape of the Au nanoparticles is possibly a 

contributing factor in the broadening of the spectra, and the resulting standard 

deviation.  The accuracy and spectral resolution of our measurements can be further 

improved by using nanoparticles with better shape and size control. 

The time resolution of the nanoplasmonic biomolecular ruler can be as high as 1 

spectrum per second by taking the advantage of the high quantum efficiency of 

Rayleigh scattering compared to fluorescence or Raman scattering; therefore the 

biomolecular reaction in the time scale of seconds can also be measured using our 

system.  Even though only simple dsDNA substrate is used here, there is no limitation 

to either the sequences, or structure of the oligonucleotide substrates. The ability to 

resolve a single nanoparticle without the need for radioactive or fluorescent labeling 

also makes it possible to perform high-throughput screening in a high density 

microarray or microfluidic devices.  The technology can also be used for the detection 

of other enzymes that induce length changes. 
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Methods 

 

Preparation of the dsDNA-conjugated Au nanoparticle 

The dsDNA (Fig. 1b and Supplement) was mixed with the concentrated 

phosphine-coated Au nanoparticles (Fig. 2b-1 and Supplement) in a molar ratio of 

200:1, 100:1, 50:1, and 20:1, at room temperature for about 12 hours, then stored in -20 

°C.  Electrophoresis was used to verify the DNA attachment (Fig. 2b-2). The decreased 

mobility of the DNA-conjugated gold particles was clearly observed, indicating the 

successful DNA attachment to the gold nanoparticles. The presence of DNA can be 

confirmed by TEM imaging, with or without the Uranyl Acetate staining (provided by 

Mark Le Gros), while the extra stain further increased the effective diameter of the 

whole complex (Fig. 2a).  

 

Scattering imaging and spectroscopy of single Au-DNA nanoconjugates 

The microscopy system consisted of a Carl Zeiss Axiovert 200 inverted 

microscope (Carl Zeiss, Germany) equipped with a darkfield condenser (1.2 < NA < 

1.4), a true-color digital camera (CoolSNAP cf, Roper Scientific, NJ), and a 300 mm 

focal-length and 300 grooves/mm monochromator (Acton Research, MA) with a 1024 

× 256-pixel cooled spectrograph CCD camera (Roper Scientific, NJ).  A 2 µm-wide 

aperture was placed in front of the entrance slit of the monochromator to keep only a 

single nanoparticle in the region of interest. After photobleaching the fluorescence, the 

true-color scattering images of Au-DNA nanoconjugates were taken using a 60X 

objective lens (NA = 0.8) and the true-color camera with a white light illumination 

from a 100 W halogen lamp.  The scattering spectra of Au-DNA nanoconjugates were 

routed to the monochromator and spectrograph CCD.  Raw spectra were normalized 
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with respect to the spectrum of a non-resonant nanoparticle (i.e., polystyrene) after the 

background subtraction.  In the real-time spectroscopy experiments, the nanoparticle-

immobilized glass slide was mounted on a transparent ITO heater with an external 

thermostat and heated to 37°C or 25°C.  The immobilized nanoparticles were immersed 

in a drop of buffer solution which also served as the contact fluid for the dark-field 

condenser.  The endonuclease or exonuclease enzymes with buffer solution were 

loaded by pipette into the contact fluid and the continuous spectrum acquisition started 

simultaneously.  The microscopy system was completely covered by a dark shield, 

which prevents ambient light interference and excessive evaporation.  

 

Cleavage reaction of dsDNA on Au-DNA nanoparticle conjugate 

We immobilized the Au-DNA nanoconjugates electrostatically on an ultra-clean 

thin glass slide.  Cleavage reaction for DNA was performed with endonucleases 

HinDIII, KpnI, XhoI, and SalI (Figure 2b-3), and 1 µL of the Au-DNA particle in a 100 

μL final volume (3.5 nM final concentration for restriction enzymes), same as 

described in the Supplement S1, with the only modification of removing the reducing 

reagent from the reaction buffer and the enzymes, in order to avoid detachment of the 

thiolated DNA from the gold nanoparticle. 

 

Real time measurement of endonuclease activity, kinetics, and inhibition 

For kinetic measurement, XhoI is used as model enzyme.  The cleavage was 

confirmed by FITC fluorescence images as well (Fig. 3a, panel 5, 6, and 7).  The 

purpose of the FITC label removal experiment was solely for the validation of the 

enzymatic cleavage.  The fluorescent label had no influence on the plasmon resonance 

measurement.  The scattering spectra of the nanoconjugates were measured after the 
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fluorescence was photobleached.  For real-time kinetics measurement, 1 spectrum with 

10 second integration time was acquired for every minute.  Significant blue shifts of the 

plasmon resonance wavelength were observed for the first 10 minutes and correlated 

with intensity decrease (Fig. 3b).   

 The rate of the endonuclease reaction on the Au-DNA nanoconjugate showed a 

concentration dependence, and was determined to followed a Michaelis-Menton 

enzyme kinetics30 (Fig. 3).  The inhibition of the endonuclease reactions on Au-DNA 

nanoconjugates were achieved with the simultaneous addition of 10 mM EDTA and the 

3.5 nM XhoI enzymes, the Mg2+ in the reaction buffer, which is required for XhoI 

activity, can be chelated by EDTA.  

 

BAL-31 reaction of EcoRI(Q111)-bound dsDNA-Au 

 The cleavage-defective EcoRI(Q111) was purified according to previous 

description24-26, and incubated at 100 nM final concentration with the immobilized Au-

DNA nanoconjugates (with 5’ thiolated oligo AAAGGATCCAAGCTTGAATTC-

CTCGAGAGATCTGTCGACGATATCGGTACCAAA and its complementary strand, 

note FITC moiety was not synthesized for this dsDNA version, so that exonuclease 

cleavage would not be affected, while the thiolation scheme was kept) for 10 minutes in 

the 80 μL reaction buffer at 37°C.  Afterwards, 20 μL BAL31 enzymes (Clontech, CA) 

was added into the reaction buffer containing immobilized Au-DNA nanoconjugates in 

a 100 μL final volume, with a BAL31 final concentration of 100nM.  The binding 

buffer contains 50mM NaCl, 10mM MgCl2, 0.025% Triton X-100, and 100mM Tris-

HCl pH7.5 at 25°C. 
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Figure legends 

 

Figure 1. Design of the Au-DNA nanoplasmonic molecular ruler.  (a) Synthesis 

process of the single Au-DNA nanoconjugate.  The 20 nm Au nanoparticle modified 

with a phosphine surfactant monolayer was enclosed by a layer of synthesized 54-bp 

dsDNA.  A thiol group and FITC fluorophore were synthesized at each end of the 

dsDNA respectively.  Through the thiol-Au chemistry, the dsDNA was tethered onto 

20 nm Au nanoparticles.  The dsDNA can be cleaved by 4 endonuclease enzymes, 

KpnI, SalI, XhoI, and HinDIII, with different incision lengths.  (b) Sequence of the 

dsDNA.  The incision sites of the enzymes are denoted on the respect positions of the 

dsDNA.  The dsDNA contains restriction sites for the endonucleases HinDIII, XhoI, 

SalI, and KpnI, with their central incision positions at 12, 24, 36, and 48 bps from the 

Au nanoparticle-tethered end, respectively.  The fluorescent labeling (FITC) is only for 

further confirmation of nuclease reactions, and thus not necessary for plasmon 

resonance measurements.  The cleavage of the synthesized dsDNA with the 

endonucleases was confirmed by gel electrophoresis (Supplement Fig. S1). 

 

Figure 2. Properties of the nanoconjugates.  (a) TEM images of nanoconjugates.  

Shown are: (1) 20 nm Au nanoparticles, (2) Au-DNA nanoconjugates without fixation 

and staining, and (3) Au-DNA nanoconjugates (DNA:Au = 100:1 molar ratio) fixed 

and stained by Uranyl Acetate; (4) The gap distances between the Au nanoparticles in 

the three TEM images.  The presence of DNA can be confirmed by the Uranyl Acetate 

staining, while the extra stain further increased the effective diameter of the whole 

complex.  Uneven DNA density around the surface in Fig. 2a-2 is due to fixation and 

surface variations.  (b) Gel electrophoresis of nanoconjugates.  Shown are: (1) Au-
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phosphine (Au-ph) nanoconjugates in different phosphine/Au ratios.  The Au 

nanoparticles were stabilized through surface exchange with Bis(p-

sulfonatophenyl)phenylphosphine (phosphine) to prevent aggregations.  (2) Au-DNA 

nanoconjugates in different dsDNA/Au-ph ratios, and (3) Au-DNA nanoconjugates 

cleaved by 4 endonuclease enzymes, KpnI, SalI, XhoI, and HinDIII, with incisions that 

will lead to the loss of the first 6, 18, 30, and 42 base pairs from the distal end of the 

full-length dsDNA, respectively. The shorter the DNA, the faster the gel mobility is. (c) 

Darkfield scattering images of nanoconjugates.  Shown are: (1) A single nanoparticle 

being targeted and isolated from a field of Au-DNA nanoparticles readily available for 

spectroscopic examination.  The scattering image of a single nanoconjugate can be 

obtained on a B/W spectrograph CCD camera; shown here are the true-color scattering 

images of (2) Au-ph and (3) Au-DNA nanoconjugates.  The nanoconjugate shown in 

panel 1 was selected for spectral examination by a 2 µm entrance slit (vertical) in front 

of the detector and by defining a region-of-interest (green, horizontal bars) in the 

software;  (4) scattering spectra of the Au-ph and Au-DNA nanoconjugates.  Au-DNA 

is red-shifted from 540 nm to 607 nm compared to Au-ph.  Au-ph is the Au 

nanoparticle without DNA attachment and is the negative control here. 

 

Figure 3. Plasmon resonance shift detection of endonuclease enzymes with Au-

DNA nanoconjugates.  (a) Plasmon resonance sensing with multiple nanoconjugates.  

Shown are: the darkfield scattering images of Au-DNA nanoconjugates (1) before, (2) 

1 hr and (3)16 hr after the cleavage reaction by enzyme XhoI; (4) the plasmon 

resonance wavelengths of the single Au nanoconjugates in the three cases above.  Also 

shown are: fluorescence images of Au-DNA nanoconjugates (5) before, (6) 1hr and (7) 

16 hr after the cleavage reaction by enzyme XhoI.  The fluorescence intensities at 4 



16 

different areas (red squares) in each case were measured and the statistics of the 

fluorescence intensities are shown in (8) with the average fluorescence intensity of the 

single Au nanoconjugates in the above three cases. Note the full length of the complete 

dsDNA (~20 nm) is much longer than the effective Forster transfer distance (<10 nm), 

and thus the FITC fluorophore at distal end of DNA was not quenched.  The FITC 

fluorophore was detached from the Au nanoparticles and diffused into the buffer 

solution after the DNA cleavage, so that the overall fluorescence intensity at the image 

plane (where the Au nanoparticles are) decreased dramatically.  (b) Real-time plasmon 

resonance sensing of endonuclease reactions by single Au-DNA nanoconjugate, with 

the peak plasmon resonance wavelength shown as a function of time.  The Au-DNA 

nanoconjugates were illuminated with a white light source for 20 minutes to completely 

photobleach the fluorescence prior to the spectroscopic measurement.  The continuous 

acquisition of the scattering spectrum of a selected nanoparticle starts in 

synchronization with the introduction of the XhoI enzymes with the final concentration 

of ~3.5 nM.  One spectrum was taken every minute with a 10-second integration time.  

Shown are: (1) raw scattering spectra data of a single Au-DNA nanoconjugate in the 

first 10 minutes of endonuclease reaction; time-resolved.  In the first 3 minutes, there 

were a temporary red shift of the plasmon resonance wavelength, an increase of 

scattering intensity, and a flattening of the spectra.  The brief oscillation is likely due to 

the initial loading of the enzyme molecules onto the dsDNA before incision. (2) 

plasmon resonance peak wavelength and (3) scattering peak intensity of the Au-DNA 

nanoconjugate in the 30min reactions with 1:1 XhoI (3.5 nM final concentration, red 

circle), 1:10 XhoI (350 pM final concentration, orange triangle), control buffer solution 

only (blue diamond), and inhibitor/chelator EDTA (green square).  The plasmon 

resonance wavelength data exhibits a first-order exponential decay (red and orange 
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curves).  The rate of the endonuclease reaction on the Au-DNA nanoconjugate showed 

concentration dependence, and followed a Michaelis-Menton enzyme kinetics.  The 

plasmon resonance wavelength of the nanoconjugate decreased at a slower rate with 

lower concentrations of enzymes.  The reaction rate constants for these two 

concentrations of enzyme were 5.8 × 10-3 s-1 and 1.5 × 10-3 s-1, respectively. (c) 

Calibration curve generated by plasmon resonance sensing of multiple enzymes.  

Shown are (1) typical scattering spectra and (2) plasmon resonance peak wavelengths 

of the Au-DNA nanoconjugates after the cleavage reactions with 4 enzymes 

respectively, and as a function of the number of base pairs remain attached to the Au 

nanoparticle after the cleavage.  We also estimated the equivalent refractive indices of 

the dsDNA after cleavages.  The red curve is a fit from a semi-empirical model using a 

Langevin-type dependence of the refractive index vs. dsDNA length (Supplement).   

 

Figure 4. DNA footprinting of exonuclease stalled by the EcoRI(Q111) proteins.  (a) 

Schematic diagram of footprinting by BAL31 and the stalled BAL31 hydrolysis by 

DNA bound EcoRI(Q111) protein.  The EcoRI(Q111) binds to GAATTC site on the 

DNA plus additional 3 bps on both flanks of GAATTC, and blocks nucleotide removal 

by BAL31 on a single Au-DNA nanoconjugate.  The dsDNA is removed almost 

completely by the BAL31 enzyme in the absence of the EcoRI(Q111).  However, after 

binding with EcoRI(Q111), the BAL31 exonuclease hydrolysis is stalled at 7+/-3 bp 

from the 3’ end of GAATTC binding sequence due to the EcoRI(Q111) blockade.  (b) 

Time-lapse scattering spectra of the single Au-DNA nanoconjugate without 

EcoRI(Q111) during the exonuclease BAL31 hydrolysis.  (c) Time-lapse scattering 

spectra of the single Au-DNA nanoconjugate with EcoRI(Q111) during the 

exonuclease BAL31 hydrolysis.  The plasmon resonance wavelength of a single 
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nanoconjugate in each of these two samples is monitored throughout the hydrolysis 

reactions in 21 minutes.  (d) Plasmon resonance wavelength of the Au-DNA 

nanoconjugate as the function of time in the exonuclease reactions, with wavelength 

shift shown on right Y axis.  Also shown on the left y axis is the digested base pair of 

the dsDNA as the function of time in the exonuclease reactions.  The BAL31 maps the 

distal boundary of the DNA footprint to ~25 bp from the distal end of the DNA, which 

matches the previous measurement by radioactive footprinting method25.  Previous 

mapping indicates that EcoRI(Q111) binds to 3 bp of dsDNA flanking the 3’ boundary 

of the GAATTC sequence, and the steric exclusion between EcoRI(Q111) and the 

footprinting exonuclease contributes to the other 4 bps25.  A control exonuclease Exo-1, 

which does not cleave dsDNA, is used as negative control here. 
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Figure 3 
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Figure 4 
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